Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection.

نویسندگان

  • Sean Brennan
  • Robert Jackson
  • Manish Patel
  • Mark W Sims
  • Diane Hudman
  • Robert I Norman
  • David Lodwick
  • Richard D Rainbow
چکیده

ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical excitability thus sparing intracellular ATP. This could reduce reperfusion injury by improving calcium homeostasis. Using a combination of contractile function analysis, calcium fluorescence imaging and patch clamp electrophysiology in cardiomyocytes isolated from adult male Wistar rats, we demonstrated that the opening of sarcolemmal KATP channels was markedly delayed after cardioprotective treatments: ischemic preconditioning, adenosine and PMA. This was due to the preservation of intracellular ATP for longer during simulated ischemia therefore maintaining sarcolemmal KATP channels in the closed state for longer. As the simulated ischemia progressed, KATP channels opened to cause contractile, calcium transient and action potential failure; however there was no indication of any channel activity early during simulated ischemia to impart an energy sparing hyperpolarization or action potential shortening. We present compelling evidence to demonstrate that an early opening of sarcolemmal KATP channels during simulated ischemia is not part of the protective mechanism imparted by ischemic preconditioning or other PKC-dependent cardioprotective stimuli. On the contrary, channel opening was actually delayed. We conclude that sarcolemmal KATP channel opening is a consequence of ATP depletion, not a primary mechanism of ATP preservation in these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice.

BACKGROUND We recently demonstrated that the sarcolemmal ATP-sensitive potassium (sarcK(ATP)) channel plays a key role in cardioprotection against ischemia/reperfusion injuries in Kir6.2-knockout (KO) mice. In the present study, we evaluated the effects of diazoxide, a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener, on ischemia-induced myocardial stunning in sarcK(ATP) channe...

متن کامل

Cardiac Preconditioning by Anesthetic Agents: Roles of Volatile Anesthetics and Opioids in Cardioprotection

Cardiac preconditioning is the most potent and consistently reproducible method of protecting heart tissue against myocardial ischemia-reperfusion injury. This review discussed about the signaling and amplification cascades from either ischemic preconditioning stimulus or pharmacological preconditioning stimulus, the putative end-effectors and the mechanisms involved in cellular protection. The...

متن کامل

Dual roles of mitochondrial K(ATP) channels in diazoxide-mediated protection in isolated rabbit hearts.

Whether the mitochondrial ATP-dependent potassium (mK(ATP)) channel is the trigger or the mediator of cardioprotection is controversial. We investigated the critical time sequences of mK(ATP) channel opening for cardioprotection in isolated rabbit hearts. Pretreatment with diazoxide (100 microM), a selective mK(ATP) channel opener, for 5 min followed by 10 min washout before the 30-min ischemia...

متن کامل

Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemmal KATP channel at reduced intracellular pH.

BACKGROUND Volatile anesthetics can protect the myocardium against ischemic injury by opening the adenosine triphosphate (ATP)-sensitive potassium (K(atp)) channels. However, direct evidence for anesthetic-channel interaction is still limited, and little is known about the role K(atp) channel modulators play in this effect. Because pH is one of the regulators of K(atp) channels, the authors tes...

متن کامل

Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial K(ATP) channels in mouse cardiomyocytes.

Potassium (K+) channels in the inner mitochondrial membrane influence cell function and survival. Increasing evidence indicates that multiple signaling pathways and pharmacological actions converge on mitochondrial ATP-sensitive K+ (mitoKATP) channels and PKC to confer cytoprotection against necrotic and apoptotic cell injury. However, the molecular structure of mitoKATP channels remains unreso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular and cellular cardiology

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2015